返回
Featured image of post HashMap源码分析

HashMap源码分析

HashMap源码分析

简介

HashMap最早出现在JDK1.2中,底层基于散列算法实现。HashMap 允许 null 键和 null 值,是非线程安全类,在多线程环境下可能会存在问题。

1.7版本的HashMap的数据结构:

image-20220215230152236
image-20220215230152236

1.8版本的HashMap数据结构:

面试必会之HashMap源码分析
面试必会之HashMap源码分析

为什么有的是链表有的是红黑树?

在jdk1.8版本后,java对HashMap做了改进,在链表长度大于8的时候,将后面的数据存在红黑树中,以加快检索速度。

核心源码(含注释)

import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Set;

/**
 * HashMap 源码解读
 * HashMap继承了AbstractMap,实现了Map(多余了)
 * HashMap面试题:
 * 1、HashMap的初始容量是多少,负载因子是多少,扩容阈值值是多少?
 * 答案:初始容量:16、负载因子:0.75、扩容阈值:12
 */
public class HashMap<K, V> extends AbstractMap<K, V>
        implements Map<K, V>, Cloneable, Serializable {

    /**
     * 默认初始容量16(必须是2的幂次方)
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * 最大容量
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 默认的负载因子,用来计算threshold
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * 链表转成树的阈值,当桶中链表长度大于8时转成树
     * threshold = capacity * loadFactor
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     *  桶中结构转化为红黑树对应的table的最小大小
     *  当需要将解决 hash 冲突的链表转变为红黑树时,
     *  需要判断下此时数组容量,
     *  若是由于数组容量太小(小于 MIN_TREEIFY_CAPACITY )
     *  导致的 hash 冲突太多,则不进行链表转变为红黑树操作,
     *  转为利用 resize() 函数对 hashMap 扩容
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * 进行resize操作时,若桶中数量少于6则从树转成链表
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * 存放具体元素的集
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     *  保存Node<K,V>节点的数组
     *  该表在首次使用时初始化,并根据需要调整大小。 分配时,
     *  长度始终是2的幂。
     */
    transient Node<K,V>[] table;

    /**
     * 记录 hashMap 当前存储的元素的数量
     */
    transient int size;

    /**
     * 每次更改map结构的计数器
     */
    transient int modCount;

    /**
     * 扩容的阈值 (capacity * load factor).
     */
    int threshold;

    /**
     * 负载因子:要调整大小的下一个大小值(容量*加载因子)。
     */
    final float loadFactor;


    /**
     * 基本哈希 bin 节点
     */
    static class Node<K, V> implements Map.Entry<K, V> {
        final int hash;
        final K key;
        V value;
        Node<K, V> next;
    }


    /**
     * 红黑树节点,继承了LinkedHashMap.Entry
     * LinkedHashMap.Entry又继承了 HashMap.Node
     * static class Entry<K,V> extends HashMap.Node<K,V> {
     *         Entry<K,V> before, after;
     *         Entry(int hash, K key, V value, Node<K,V> next) {
     *             super(hash, key, value, next);
     *         }
     *     }
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // 父节点
        TreeNode<K,V> left;     // 左节点
        boolean red;            // 红色/黑色节点
//        spit()方法的作用是将旧数组转移到新数组
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {//区分树链表的高低位
                    if ((e.prev = loTail) == null)//低位尾部标记为null,表示还未开始处理,此时e是第一个要处理的低位树链表
                        //节点,故e.prev等于loTail都等于null
                        loHead = e;//低位树链表的第一个树链表节点
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;//低位树链表元素个数计数
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;//高位树链表的第一个树链表节点
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;//高位树链表元素个数计数
                }
            }

            if (loHead != null) {//低位树链表不为null
                if (lc <= UNTREEIFY_THRESHOLD)//低位树链表元素个数若小于等于6
                    tab[index] = loHead.untreeify(map);//开始去树化操作(就是将元素TreeNode节点都转换成Node节点)
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified) //若高位数链表头节点为空,说明还没有处理完高位
                        //,还不能进行树化操作
                        loHead.treeify(tab);//低位树链表元素个数若大于6且高位树链表头节点不等于null,开始将低位树链表真
                    //正树化成红黑树(前面都只是挂着TreeNode的名号,但实际只是链表结构,还没包含红黑树的特性,
                    //在这里才赋予了它红黑树的特性)
                }
            }
            if (hiHead != null) {//高位树链表不为null
                if (hc <= UNTREEIFY_THRESHOLD)//高位树链表元素个数若小于等于6
                    tab[index + bit] = hiHead.untreeify(map);//开始去树化操作(就是将元素TreeNode节点都转换成Node节点)
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null) //若低位数链表头节点为空,说明还没有处理完低位,还不能进行树化操作
                        hiHead.treeify(tab);//高位树链表元素个数若大于6且低位树链表头节点不等于null,
                    //开始将高位树链表真正树化成红黑树
                }
            }
        }
    }

    /**
     * 公开的插入操作
     * @param key
     * @param value
     * @return
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * 实际的插入操作
     * @param hash
     * @param key
     * @param value
     * @param onlyIfAbsent
     * @param evict
     * @return
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K, V>[] tab;
        Node<K, V> p;
        int n, i;
        // 容量初始化:当table为空,则调用resize()方法来初始化容器
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //确定元素存放在哪个桶中,桶为空,新生成节点放入桶中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K, V> e;
            K k;
            // 如果桶中第一个元素(数组中的结点)的hash值相等,key相等
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                //如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
                e = p;
            // 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
            else if (p instanceof TreeNode)
                // 放入树中
                e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
            else { // 否则桶中已有节点
                //对链表进行遍历,并统计链表长度
                for (int binCount = 0; ; ++binCount) {
                    // 如果节点的下一个指向为null,到达链表的尾部
                    if ((e = p.next) == null) {
                        //在尾部插入新结点
                        p.next = newNode(hash, key, value, null);
                        // 如果结点数量达到阈值,转化为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 判断链表中结点的key值与插入的元素的key值是否相等
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //判断要插入的键值对是否存在 HashMap 中
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 键值对数量超过阈值时,则进行扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * hash计算的方法
     * @param key
     * @return
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }


    /**
     * 初始化或者扩容,扩容为原来的2倍
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        // map容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 临界值
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 如果map容量大于0时,进行扩容
        if (oldCap > 0) {
            // 当容量大于等于最大容量时,threshold(临界值)设为Integer的最大值
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 否则一般情况下进行扩容,容量为原来的2倍数,向左位移1位相当于*2
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // 当threshold大于0,也就是不是未初始化时,就将原来的值赋值给新的threshold
            newCap = oldThr;
        else {               // 当threshold=0,table 为null时,进行map的初始化操作。
            newCap = DEFAULT_INITIAL_CAPACITY; // 16
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); // 16 * 0.75 = 12
        }
        if (newThr == 0) {
            // 计算新的扩容阈值
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        /**
         * 创建新的容量的Node数组
         */
       Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 如果旧数组桶不是空,则遍历桶数组,并将键值对映射到新的桶数组中
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 如果链表上只有一个节点,直接将节点添加到新的数组中
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;

                    // 如果为红黑树节点
                    else if (e instanceof TreeNode)
                        // spit()方法的作用是将旧数组转移到新数组,重新映射时,需要对红黑树进行拆分
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // 如果不是红黑树,则按链表处理
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        // 遍历链表,并将链表节点按原顺序进行分组
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 将分组后的链表映射到新桶中
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

}

HashMap十四道经典面试题

1. HashMap的底层数据结构是什么?

在JDK1.7中和JDK1.8中有所区别:

在JDK1.7中,由”数组+链表“组成,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的。

在JDK1.8中,有“数组+链表+红黑树”组成。当链表过长,则会严重影响HashMap的性能,红黑树搜索时间复杂度是O(logn),而链表是O(n)。因此,JDK1.8对数据结构做了进一步的优化,引入了红黑树,链表和红黑树在达到一定条件会进行转换:

  • 当链表超过8且数组长度(数据总量)超过64才会转为红黑树
  • 将链表转换成红黑树前会判断,如果当前数组的长度小于64,那么会选择先进行数组扩容,而不是转换为红黑树,以减少搜索时间。

图片
图片

2. 说一下HashMap的特点

  • hashmap存取是无序的
  • 键和值位置都可以是null,但是键位置只能是一个null
  • 键位置是唯一的,底层的数据结构是控制键的
  • jdk1.8前数据结构是:链表+数组jdk1.8之后是:数组+链表+红黑树
  • 阈值(边界值)>8并且数组长度大于64,才将链表转换成红黑树,变成红黑树的目的是提高搜索速度,高效查询

3. 解决hash冲突的办法有哪些?HashMap用的哪种?

解决Hash冲突方法有:开放定址法、再哈希法、链地址法(HashMap中常见的拉链法)、简历公共溢出区。HashMap中采用的是链地址法。

  • 开放定址法也称为再散列法,基本思想就是,如果p=H(key)出现冲突时,则以p为基础,再次hash,p1=H(p),如果p1再次出现冲突,则以p1为基础,以此类推,直到找到一个不冲突的哈希地址pi。因此开放定址法所需要的hash表的长度要大于等于所需要存放的元素,而且因为存在再次hash,所以只能在删除的节点上做标记,而不能真正删除节点
  • 再哈希法(双重散列,多重散列),提供多个不同的hash函数,R1=H1(key1)发生冲突时,再计算R2=H2(key1),直到没有冲突为止。这样做虽然不易产生堆集,但增加了计算的时间。
  • 链地址法(拉链法),将哈希值相同的元素构成一个同义词的单链表,并将单链表的头指针存放在哈希表的第i个单元中,查找、插入和删除主要在同义词链表中进行,链表法适用于经常进行插入和删除的情况。
  • 建立公共溢出区,将哈希表分为公共表和溢出表,当溢出发生时,将所有溢出数据统一放到溢出区

注意开放定址法和再哈希法的区别是

  • 开放定址法只能使用同一种hash函数进行再次hash,再哈希法可以调用多种不同的hash函数进行再次hash

4. 为什么要在数组长度大于64之后,链表才会进化为红黑树

在数组比较小时如果出现红黑树结构,反而会降低效率,而红黑树需要进行左旋右旋,变色,这些操作来保持平衡,同时数组长度小于64时,搜索时间相对要快些,总之是为了加快搜索速度,提高性能

JDK1.8以前HashMap的实现是数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当HashMap中有大量的元素都存放在同一个桶中时,这个桶下有一条长长的链表,此时HashMap就相当于单链表,假如单链表有n个元素,遍历的时间复杂度就从O(1)退化成O(n),完全失去了它的优势,为了解决此种情况,JDK1.8中引入了红黑树(查找的时间复杂度为O(logn))来优化这种问题

5. 为什么加载因子设置为0.75,初始化临界值是12?

HashMap中的threshold是HashMap所能容纳键值对的最大值。计算公式为length*LoadFactory。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数也越大

loadFactory越趋近于1,那么数组中存放的数据(entry也就越来越多),数据也就越密集,也就会有更多的链表长度处于更长的数值,我们的查询效率就会越低,当我们添加数据,产生hash冲突的概率也会更高

默认的loadFactory是0.75,loadFactory越小,越趋近于0,数组中个存放的数据(entry)也就越少,表现得更加稀疏

图片
图片

0.75是对空间和时间效率的一种平衡选择

如果负载因子小一些比如是0.4,那么初始长度16*0.4=6,数组占满6个空间就进行扩容,很多空间可能元素很少甚至没有元素,会造成大量的空间被浪费

如果负载因子大一些比如是0.9,这样会导致扩容之前查找元素的效率非常低

loadfactory设置为0.75是经过多重计算检验得到的可靠值,可以最大程度的减少rehash的次数,避免过多的性能消耗

6. 哈希表底层采用何种算法计算hash值?还有哪些算法可以计算出hash值?

hashCode方法是Object中的方法,所有的类都可以对其进行使用,首先底层通过调用hashCode方法生成初始hash值h1,然后将h1无符号右移16位得到h2,之后将h1与h2进行按位异或(^)运算得到最终hash值h3,之后将h3与(length-1)进行按位与(&)运算得到hash表索引

其他可以计算出hash值的算法有

  • 平方取中法
  • 取余数
  • 伪随机数法

7. 当两个对象的hashCode相等时会怎样

hashCode相等产生hash碰撞,hashCode相等会调用equals方法比较内容是否相等,内容如果相等则会进行覆盖,内容如果不等则会连接到链表后方,链表长度超过8且数组长度超过64,会转变成红黑树节点

8. 何时发生哈希碰撞和什么是哈希碰撞,如何解决哈希碰撞?

只要两个元素的key计算的hash码值相同就会发生hash碰撞,jdk8之前使用链表解决哈希碰撞,jdk8之后使用链表+红黑树解决哈希碰撞

9. HashMap的put方法流程

以jdk8为例,简要流程如下:

  1. 首先根据key的值计算hash值,找到该元素在数组中存储的下标
  2. 如果数组是空的,则调用resize进行初始化;
  3. 如果没有哈希冲突直接放在对应的数组下标里
  4. 如果冲突了,且key已经存在,就覆盖掉value
  5. 如果冲突后是链表结构,就判断该链表是否大于8,如果大于8并且数组容量小于64,就进行扩容;如果链表节点数量大于8并且数组的容量大于64,则将这个结构转换成红黑树;否则,链表插入键值对,若key存在,就覆盖掉value
  6. 如果冲突后,发现该节点是红黑树,就将这个节点挂在树上

图片
图片

10. HashMap的扩容方式

HashMap在容量超过负载因子所定义的容量之后,就会扩容。java里的数组是无法自己扩容的,将HashMap的大小扩大为原来数组的两倍

我们来看jdk1.8扩容的源码

    final Node<K,V>[] resize() {
        //oldTab:引用扩容前的哈希表
        Node<K,V>[] oldTab = table;
        //oldCap:表示扩容前的table数组的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //获得旧哈希表的扩容阈值
        int oldThr = threshold;
        //newCap:扩容之后table数组大小
        //newThr:扩容之后下次触发扩容的条件
        int newCap, newThr = 0;
        //条件成立说明hashMap中的散列表已经初始化过了,是一次正常扩容
        if (oldCap > 0) {
            //判断旧的容量是否大于等于最大容量,如果是,则无法扩容,并且设置扩容条件为int最大值,
            //这种情况属于非常少数的情况
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }//设置newCap新容量为oldCap旧容量的二倍(<<1),并且<最大容量,而且>=16,则新阈值等于旧阈值的两倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //如果oldCap=0并且边界值大于0,说明散列表是null,但此时oldThr>0
        //说明此时hashMap的创建是通过指定的构造方法创建的,新容量直接等于阈值
        //1.new HashMap(intitCap,loadFactor)
        //2.new HashMap(initCap)
        //3.new HashMap(map)
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        //这种情况下oldThr=0;oldCap=0,说明没经过初始化,创建hashMap
        //的时候是通过new HashMap()的方式创建的
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //newThr为0时,通过newCap和loadFactor计算出一个newThr
        if (newThr == 0) {
            //容量*0.75
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
                //根据上面计算出的结果创建一个更长更大的数组
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        //将table指向新创建的数组
        table = newTab;
        //本次扩容之前table不为null
        if (oldTab != null) {
            //对数组中的元素进行遍历
            for (int j = 0; j < oldCap; ++j) {
                //设置e为当前node节点
                Node<K,V> e;
                //当前桶位数据不为空,但不能知道里面是单个元素,还是链表或红黑树,
                //e = oldTab[j],先用e记录下当前元素
                if ((e = oldTab[j]) != null) {
                    //将老数组j桶位置为空,方便回收
                    oldTab[j] = null;
                    //如果e节点不存在下一个节点,说明e是单个元素,则直接放置在新数组的桶位
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果e是树节点,证明该节点处于红黑树中
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //e为链表节点,则对链表进行遍历
                    else { // preserve order
                        //低位链表:存放在扩容之后的数组的下标位置,与当前数组下标位置一致
                        //loHead:低位链表头节点
                        //loTail低位链表尾节点
                        Node<K,V> loHead = null, loTail = null;
                        //高位链表,存放扩容之后的数组的下标位置,=原索引+扩容之前数组容量
                        //hiHead:高位链表头节点
                        //hiTail:高位链表尾节点
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //oldCap为16:10000,与e.hsah做&运算可以得到高位为1还是0
                            //高位为0,放在低位链表
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    //loHead指向e
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            //高位为1,放在高位链表
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        //低位链表已成,将头节点loHead指向在原位
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        //高位链表已成,将头节点指向新索引
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

复制代码

扩容之后原位置的节点只有两种调整

  • 保持原位置不动(新bit位为0时)
  • 散列原索引+扩容大小的位置去(新bit位为1时)

扩容之后元素的散列设置的非常巧妙,节省了计算hash值的时间,我们来看一 下具体的实现

图片
图片

当数组长度从16到32,其实只是多了一个bit位的运算,我们只需要在意那个多出来的bit为是0还是1,是0的话索引不变,是1的话索引变为当前索引值+扩容的长度,比如5变成5+16=21

图片
图片

这样的扩容方式不仅节省了重新计算hash的时间,而且保证了当前桶中的元素总数一定小于等于原来桶中的元素数量,避免了更严重的hash冲突,均匀的把之前冲突的节点分散到新的桶中去

11. 一般用什么作为HashMap的key?

一般用Integer、String这种不可变类当HashMap当key

  • 因为String是不可变的,当创建字符串时,它的hashcode被缓存下来,不需要再次计算,相对于其他对象更快
  • 因为获取对象的时候要用到equals()和hashCode()方法,那么键对象正确的重写这两个方法是非常重要的,这些类很规范的重写了hashCode()以及equals()方法

12. 为什么Map桶中节点个数超过8才转为红黑树?

8作为阈值作为HashMap的成员变量,在源码的注释中并没有说明阈值为什么是8

在HashMap中有这样一段注释说明,我们继续看

 * Because TreeNodes are about twice the size of regular nodes, we
 * use them only when bins contain enough nodes to warrant use
 * (see TREEIFY_THRESHOLD). And when they become too small (due to
 * removal or resizing) they are converted back to plain bins.  In
 * usages with well-distributed user hashCodes, tree bins are
 * rarely used.  Ideally, under random hashCodes, the frequency of
 * nodes in bins follows a Poisson distribution
 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 * parameter of about 0.5 on average for the default resizing
 * threshold of 0.75, although with a large variance because of
 * resizing granularity. Ignoring variance, the expected
 * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 * factorial(k)).

复制代码

翻译

因为树节点的大小大约是普通节点的两倍,所以我们只在箱子包含足够的节点时才使用树节点(参见TREEIFY_THRESHOLD)。
当他们边的太小(由于删除或调整大小)时,就会被转换回普通的桶,在使用分布良好的hashcode时,很少使用树箱。
理想情况下,在随机哈希码下,箱子中节点的频率服从泊松分布
第一个值是:

 * 0:    0.60653066
 * 1:    0.30326533
 * 2:    0.07581633
 * 3:    0.01263606
 * 4:    0.00157952
 * 5:    0.00015795
 * 6:    0.00001316
 * 7:    0.00000094
 * 8:    0.00000006
 * more: less than 1 in ten million

复制代码

树节点占用空间是普通Node的两倍,如果链表节点不够多却转换成红黑树,无疑会耗费大量的空间资源,并且在随机hash算法下的所有bin节点分布频率遵从泊松分布,链表长度达到8的概率只有0.00000006,几乎是不可能事件,所以8的计算是经过重重科学考量的

  • 从平均查找长度来看,红黑树的平均查找长度是logn,如果长度为8,则logn=3,而链表的平均查找长度为n/4,长度为8时,n/2=4,所以阈值8能大大提高搜索速度
  • 当长度为6时红黑树退化为链表是因为logn=log6约等于2.6,而n/2=6/2=3,两者相差不大,而红黑树节点占用更多的内存空间,所以此时转换最为友好

13. HashMap为什么线程不安全?

  • 多线程下扩容死循环。JDK1.7中的HashMap使用头插法插入元素,在多线程的环境下,扩容的时候有可能导致环形链表的出现,形成死循环。因此JDK1.8使用尾插法插入元素,在扩容时会保持链表元素原本的顺序,不会出现环形链表的问题
  • 多线程的put可能导致元素的丢失。多线程同时执行put操作,如果计算出来的索引位置是相同的,那会造成前一个key被后一个key覆盖,从而导致元素的丢失。此问题在JDK1.7和JDK1.8中都存在
  • put和get并发时,可能导致get为null。线程1执行put时,因为元素个数超出threshold而导致rehash,线程2此时执行get,有可能导致这个问题,此问题在JDK1.7和JDK1.8中都存在

14. 计算hash值时为什么要让低16bit和高16bit进行异或处理

  • 我们计算索引需要将hashCode值与length-1进行按位与运算,如果数组长度很小,比如16,这样的值和hashCode做异或实际上只有hashCode值的后4位在进行运算,hash值是一个随机值,而如果产生的hashCode值高位变化很大,而低位变化很小,那么有很大概率造成哈希冲突,所以我们为了使元素更好的散列,将hash值的高位也利用起来\

举个例子

如果我们不对hashCode进行按位异或,直接将hash和length-1进行按位与运算就有可能出现以下的情况

图片
图片

如果下一次生成的hashCode值高位起伏很大,而低位几乎没有变化时,高位无法参与运算

图片
图片

可以看到,两次计算出的hash相等,产生了hash冲突

所以无符号右移16位的目的是使高混乱度地区与地混乱度地区做一个中和,提高低位的随机性,减少哈希冲突

面试题转载:https://juejin.cn/post/7077363148281348126 作者:公众号_IT老哥